مملكة العلوم
الكمية المتجهة Ouuu11
مملكة العلوم
الكمية المتجهة Ouuu11
مملكة العلوم
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.



 
الرئيسيةالمنشوراتأحدث الصورالتسجيلدخولتسجيل الدخول
منتدى تربوي تعليمي شامل خاص للمعلم ماجد تيم من مدرسة حسان بن ثابت للبنين / لواء ماركا/ 0787700922 الأردن عمان - جبل النصر
الكمية المتجهة Support

 

 الكمية المتجهة

اذهب الى الأسفل 
كاتب الموضوعرسالة
راشد سلامة المحسيري




عدد المساهمات : 70
السٌّمعَة : 0
تاريخ التسجيل : 06/12/2014

الكمية المتجهة Empty
مُساهمةموضوع: الكمية المتجهة   الكمية المتجهة Emptyالأربعاء ديسمبر 10, 2014 8:38 pm

تمثيل المتجهات[عدل]

سهم المتجه من A إلى B.
يشار إلى المتجهات عادة بحروف صغيرة ثخينة، مثل a أو مائلة أيضا مثل a (تمثل الحروف الكبيرة عادة المصفوفات). كما يصطلح على كتابتها \vec{a} أو a عند كتابتها باليد. إذا كان المتجه يمثل إزاحة من النقطة A إلى النقطة B كما في الشكل، يرمز عندها له بـ \overrightarrow{AB} أو AB. يستخدم رمز القبعة (^) للإشارة إلى متجهات الوحدة، كما في \boldsymbol{\hat{a}}.
للقوة متجه طوله يبين مقدارها واتجاه المتجه تمثل إتجاه القوة.
تظهر المتجهات في المخططات والرسومات كأسهم (قطع مستقيمة موجهة)، كما هو موضح في الشكل. تسمى هنا النقطة A المبدأ، وتسمى النقطة B الرأس. يتناسب طول السهم مع مقدار المتجه، بينما يشير اتجاه السهم إلى اتجاه المتجه.
Notation for vectors in or out of a plane.svg
ونحتاج في المخططات ثنائية البعد إلى ترميز المتجه بدوائر صغيرة (كما في الشكل جانبا)، حيث تكون بعض المتجهات عمودية على مستوي المخطط. يرمز للمتجه بنقطة داخل دائرة صغيرة عندما يكون المتجه متجها خارج المخطط باتجاه المشاهد. بينما يرمز له بدائرة مرسوم في داخلها إشارة الضرب عندما يكون المتجه متجها إلى داخل المخطط. ويمكن تذكرها باعتبار النقطة هي منظر لرأس السهم، وإشارة الضرب هي منظر لذيل السهم (الريشة).

متجه في نظام إحداثي ديكارتي، يوضح موضع النقطة A مع الإحداثيات (2،3)
3D Vector.svg
قد يكون التمثيل البياني من أجل حساب المتجهات متعبًا ومعقدًا. فالمتجهات في الفضاء الإقليدي متعدد الأبعاد يمكن أن تمثل في نظام إحداثي ديكارتي. يمكن تعيين نهاية المتجه بوضعها في قائمة مرتبة من الأعداد الحقيقية.
وكمثال في الفضاء ثنائي الأبعاد (الشكل جانبا)، يكتب المتجه من مبدأ الإحداثيات O = (0,0) إلى النقطة A = (2,3) بالشكل
\mathbf{a} = (2,3).
في الفضاء الإقليدي ثلاثي الأبعاد (أو \mathbb{R}^3)، تعرف المتجهات بثلاثة أرقام تمثل الإحداثيات الديكارتية لنقطة النهاية (a,b,c):
\mathbf{a} = (a, b, c).
توضع هذه الأعداد غالبا في مصفوف عمود أو مصفوف سطر ، وخصوصا عندما نتعامل مع المصفوفات، كالتالي:
\mathbf{a} = \begin{bmatrix}
 a\\
 b\\
 c\\
\end{bmatrix}
\mathbf{a} = [ a\ b\ c ].
الطريقة الأخرى لتمثيل المتجه في الفضاء ثلاثي الأبعاد هي باستخدام متجهات الوحدة الأساسية الثلاث:
{\mathbf e}_1 = (1,0,0),\ {\mathbf e}_2 = (0,1,0),\ {\mathbf e}_3 = (0,0,1).
وفق هذا الاصطلاح، يكتب أي متجه في الفضاء الاتجاهي ثلاثي الأبعاد \mathbb{R}^3 بالشكل:
(a,b,c) = a(1,0,0) + b(0,1,0) + c(0,0,1) = a{\mathbf e}_1 + b{\mathbf e}_2 + c{\mathbf e}_3.


التاسع ه
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
الكمية المتجهة
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» الكمية المتجهة
» الكمية المتجهة
» السرعة المتجهة
» السرعة المتجهة
» انواع السرعة المتجهة

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مملكة العلوم :: العلوم الطبيعية :: الفيزياء-
انتقل الى: