مملكة العلوم
المعادلة المعتمدة على الزمن Ouuu11
مملكة العلوم
المعادلة المعتمدة على الزمن Ouuu11
مملكة العلوم
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.



 
الرئيسيةالمنشوراتأحدث الصورالتسجيلدخولتسجيل الدخول
منتدى تربوي تعليمي شامل خاص للمعلم ماجد تيم من مدرسة حسان بن ثابت للبنين / لواء ماركا/ 0787700922 الأردن عمان - جبل النصر
المعادلة المعتمدة على الزمن Support

 

 المعادلة المعتمدة على الزمن

اذهب الى الأسفل 
كاتب الموضوعرسالة
mohammad abed




عدد المساهمات : 52
السٌّمعَة : 0
تاريخ التسجيل : 03/04/2016

المعادلة المعتمدة على الزمن Empty
مُساهمةموضوع: المعادلة المعتمدة على الزمن   المعادلة المعتمدة على الزمن Emptyالإثنين أبريل 11, 2016 8:39 pm

المعادلة المعتمدة على الزمن[عدل]

دالة موجية تحقق معادلة شرودنغر غير النسبية حيث V=0. بتعبير آخر، هذا يوافق جسيما يتحرك بشكل حر في فضاء فارغ. بُين الجزء الحقيقي للدالة الموجية للجسيم في هذا الشكل.
فيما يلي معادلة شرودنغر المعتمدة على الزمن (في شكلها العام)
i \hbar \frac{\partial}{\partial t}\Psi = \hat H \Psi
في هذه المعادلة تعني \psi دالة موجية تصف النظام الكمومي (نظام صغري مثل حجم الذرة) ، وi وحدة تخيلية، و\hbar ثابت بلانك المخفض، و\hat{H} معامل هاميلتوني يصف الطاقة الكلية لكل دالة موجية معتبرة وهو يتخذ عدة صور تعتمد على المسألة الفيزيائية المراد حلها.
معادلة شرودنجر المعتمدة على الزمن في حالة جسيم يتحرك حركة توافقية تحت تأثير مجال :
i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},t) = \frac{-\hbar^2}{2m}\nabla^2 \Psi(\mathbf{r},t) + V(\mathbf{r},t) \Psi(\mathbf{r},t)
تتكون المعالة إلى اليمين من جزئين : الجزء الأول: \frac{-\hbar^2}{2m}\nabla^2 وهو يمثل مؤثر طاقة الحركة للجسيم ، والجزء الثاني V(\mathbf{r},t) وهو يمثل مؤثر الطاقة الكامنة للجسيم في المجال التوافقي (مثل مجال نواة الذرة). المجال التوافقي موصوف بالدالة V(\mathbf{r},t) التي تعتمد على الزمن t والمكان r.

تمثل كل من هاته الصفوف الثلاثة دالة موجية تحقق معادلة شرودنغر المعتمدة على الزمن لهزاز توافقي كمومي. في اليسار : الجزء الحقيقي (أزرق) والجزء التخيلي (أحمر) للدالة الموجية لجسيم. في اليمين : توزيع احتمال وجود الجسيم الموصوف بتلك الدالة الموجية في مكان معين. الصفان الأول والثاني هما مثالان لحالة مستقرة التي توافق موجات راكدة. الصف الثالث هو مثال لحالة غير مستقرة. العمود في اليمين يوضح لماذا تسمى الحالات المستقرة مستقرة.
وتتعامل معاملة شرودنجر مع الجسيم (إلكترون مثلا) الذي يتحرك في مجال نواة (مشحونة) على أنه في هيئة دالة موجية :
\Psi(\mathbf{r},t)
معتمدة على الزمن t والموقع r ، حيث يعطي حل المعادلة صفات الجسيم وما يمكن له أن يمتلكه من طاقة.
أي أن معادلة شرودنجر تماثل معادلة هاميلتون التي تعطي الطاقة الكلية لجسيم في هزاز توافقي في الحالة الكلاسيكية (ميكانيكا نيوتن ومعادلات ماكسويل) ، وأما معادلة شرودنجر فهي تعطي الطاقة الكلية للجسيم الذي يتحرك في مجال توافقي كمومي.
لم تنجح معادلة هاميلتون في التعامل مع جسيمات صغرية على المستوى الذري فلم تأتي بحلول صحيحة لحركة الإلكترون في مجال شحنة النواة ، وكان ذلك عند دراسة الطيف الضوئي من الهيدروجين. فكانت الحلول لا تتفق مع القياسات التي نحصل عليها عمليا. ذلك بعكس ميكانيكا الكم والممثلة هنا بمعادلة شرودنجر فقد استطاعت إعطاء الحلول المتفقة مع القياسات المعملية وذلك باعتبار أن الجسيم يكون في هيئة موجة مادية وليس جسما ماديا.
هذا هو عالم الذرات وتآثرها ببعضها البعض وهو عالم غريب عن العالم الذي اعتدنا عليه عند التعامل مع أجسام ذات أبعاد كبيرة ككرة الجولف أو كرة البلياردو أو عالم الكواكب والأجرام السماوية. مع تلك الأبعاد الكبيرة تصلح ميكانيكا نيوتن في إعطاء الحلول السليمة لتلك الأنظمة الكبيرة، أما عند التعامل مع عالم الذرات والجسيمات الأولية فلا بد من استخدام معادلات ميكانيكا الكم فهي وحدها (حتى الآن) التي تعطي حلولا سليمة لتلك الأنظمة الصغرية.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
المعادلة المعتمدة على الزمن
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» المعادلة الغير معتمدة على الزمن
» معادلة الحالة المعتمدة على الدالة
» معادلة الحالة المعتمدة على درجة الحرارة
» سفر عبر الزمن
»  سفر عبر الزمن

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مملكة العلوم :: العلوم الطبيعية :: الفيزياء-
انتقل الى: