نفترض آلة مكونة من توربين غازي يدخلها البخار ساخنا ويخرج منها باردا مع اكتسابنا لشعل ميكانيكي منه. ثم نقوم بتسخين البخار من جديد لأداء دورة ثانية. يعود الوسط الفعال (البخار) إلى نقطة البداية بعد أداء دورة كاملة في الدورة الحرارية. هذا يسهل حساب الطاقة ولا نحتاج إلى حساب التغيرات في دوال الحالة للنظام ، ويبقى فقط حساب الحرارة والشغل المؤدى من النظام خلال الدورة. وسوف نري عندما نتعرض إلى القانون الثاني للديناميكا الحرارية أنه لا يمكن تحويل الطاقة الحرارية بالكامل إلى شغل (طاقة حركية أو طاقة كهربائية) ، حيث لا بد من خروج جزء من الحرارة من النظام في صورة عادم ينتشر في الوسط المحيط (الهواء مثلا).
تجمع تلك المعادلة التكامل الدائري لجميع التيارات الحرارية في الدائرة. ويكون هذا المجموع ذو إشارة موجبة إذا دخلت الحرارة من خارج النظام إليه ، وتكون أشارة المجموع سلبة الإشارة إذا خرجت الحرارة من النظام إلى الوسط المحيط. وتكون [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] هي الشغل الذي أداه النظام (محرك مثلا أو كما هو مثالنا هنا في حالة توربين غازي) خلال دورة واحدة. ونعطي للشغل إشار سالبة عندما نكتسب من النظام شغلا(هذا ما اصطلح عليه العلماء ، أن تكون الحرارة أو الشغل الخارج من النظام ذو إشارة سالبة، ويكون ذو إشارة موجبة إذا أدينا نحن شغلا على النظام أو أمددنا النظام بحرارة من الخارج). تكتب هذه المعادلة أيضا كدالة لمقادير الحرارة :
حيث توضح الحرارة المفقودة من النظام والتي اعطاها النظام غلى الوسط المحيط.
وبالتالي يمكننا حساب الكفاءة الحرارية للآلة :
وتعطينا الكفاءة الحرارية لآلة ما الشغل الناتج من دورتها الحرارية ونسبتها إلى مقدار الحرارة الذي أمددنا الآلة به (وهي تكون عادة في صورة الوقود الذي تحرقة الآلة ولا بد لنا أن ندفع له ثمنا بالدولار أو الجنيهات). وأما جزء الحرارة الذي لم يتحول غلى شغل يستفاد منه فهو يخرج من النظام كعادم وينتشر في الوسط المحيط.