حساب قمر صناعي حول الأرض[عدل]
Crystal Clear app kdict.png مقالة مفصلة: مدار
محطة الفضاء الدولية (ISS) سنة 2011
عند اعتبار ان مدار القمر الصناعي أو مدار محطة الفضاء الدولية دائري حول الأرض يمكن جعل وزن القمر الصناعي (القوة الوزنية) مساوية للقوة الطاردة المركزية ، ونحصل على سرعة دوران القمر الصناعي حول الأرض ، وزمن الدورة .
قانون الجذب العام لنيوتن :
G = \gamma \cdot \frac{m_\mathrm{Sat} \cdot m_\mathrm{Z}}{r^2}
حيث :
\!\,G = القوة الوزنية ,
\!\;\gamma = ثابت الجاذبية,
\!\,m_\mathrm{Sat} = كتلة التابع,
\!\,m_\mathrm{Z} = كتلة الجسم المركزي,
\!\,r = نصف قطر الجسم المركزي.
وتعطى القوة الوزنية لقمر صناعي يدور حول الارض مع استخدام متوسط كثافة الأرض \!\,\rho (بدلا من كتلتها) فنحصل على:
G = \gamma \cdot \frac {m_\mathrm{Sat} \cdot \rho \cdot r^3 \cdot \frac{4 \pi}{3}}{r^2} = \gamma \cdot m_\mathrm{Sat} \cdot \rho \cdot r \cdot \frac{4 \pi}{3}
وبمساواة هذه المعادلة بمعادلة القوة الوزنية G = m_\mathrm{Sat} \cdot g نحصل على التسارع المركزي \!\,g (في حالة الأرض هو عجلة الجاذبية ):
g = \gamma \cdot \rho \cdot r \cdot \frac{4 \pi}{3}
ونفترض أن القوة الوزنية \!\,G والقوة الطاردة المركزية \!\,Z عند السرعة في المدار\!\,v متساويتان:
Z = m_\mathrm{Sat} v^2 / r \stackrel{!}{=} G = m_\mathrm{Sat} \cdot \gamma \cdot \rho \cdot r \cdot \frac{4 \pi}{3} \!\,= m_\mathrm{Sat} \cdot g
وبحل المعادلة للحصول على السرعة \!\,v وإجراء الاختصارات لكتلة القمر الصناعي m_\mathrm{Sat}:
v = \sqrt {r \cdot g} = \sqrt {\gamma \cdot \rho \cdot r^2 \cdot \frac{4 \pi}{3}} = r \cdot \sqrt {\gamma \cdot \rho \cdot \frac{4 \pi}{3}}
نحصل على زمن الدورة \!\,t