مملكة العلوم
Water Ouuu11
مملكة العلوم
Water Ouuu11
مملكة العلوم
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.



 
الرئيسيةالمنشوراتأحدث الصورالتسجيلدخولتسجيل الدخول
منتدى تربوي تعليمي شامل خاص للمعلم ماجد تيم من مدرسة حسان بن ثابت للبنين / لواء ماركا/ 0787700922 الأردن عمان - جبل النصر
Water Support

 

 Water

اذهب الى الأسفل 
كاتب الموضوعرسالة
ĹŎăў åђMªĎ




عدد المساهمات : 40
السٌّمعَة : 0
تاريخ التسجيل : 09/05/2013

Water Empty
مُساهمةموضوع: Water   Water Emptyالجمعة مايو 10, 2013 9:19 pm

afro
Water in three states: Liquid, solid (ice), and (invisible) vapor in air. Clouds are droplets of liquid, condensed from water vapor.
Water is a common chemical substance that is essential for the survival of all known forms of life.[1] In typical usage, water refers only to its liquid form or state, but the substance also has a solid state, ice, and a gaseous state, water vapor. About 1,460 teratonnes (Tt) of water covers 71% of the Earth's surface, mostly in oceans and other large water bodies, with 1.6% of water below ground in aquifers and 0.001% in the air as vapor, clouds (formed of solid and liquid water particles suspended in air), and precipitation.[2] Some of the Earth's water is contained within man-made and natural objects near the Earth's surface such as water towers, animal and plant bodies, manufactured products, and food stores.
Saltwater oceans hold 97% of surface water, glaciers and polar ice caps 2.4%, and other land surface water such as rivers, lakes and ponds 0.6%. Water moves continually through a cycle of evaporation or transpiration (evapotranspiration), precipitation, and runoff, usually reaching the sea. Winds carry water vapor over land at the same rate as runoff into the sea, about 36 Tt per year. Over land, evaporation and transpiration contribute another 71 Tt per year to the precipitation of 107 Tt per year over land. Some water is trapped for varying periods in ice caps, glaciers, aquifers, or in lakes, sometimes providing fresh water for life on land. Clean, fresh water is essential to human and other life. However, in many parts of the world - especially developing countries - it is in short supply. Water is a solvent for a wide variety of chemical substances.
Types of water
Water can appear in three phases. Water takes many different forms on Earth: water vapor and clouds in the sky; seawater and rarely icebergs in the ocean; glaciers and rivers in the mountains; and aquifers in the ground.
Water can dissolve many different substances, giving it different tastes and odors. In fact, humans and other animals have developed senses to be able to evaluate the potability of water: animals generally dislike the taste of salty sea water and the putrid swamps and favor the purer water of a mountain spring or aquifer. Humans also tend to prefer cold water rather than lukewarm, as cold water is likely to contain less microbes. The taste advertised in spring water or mineral water derives from the minerals dissolved in it, as pure H2O is tasteless. As such, purity in spring and mineral water refers to purity from toxins, pollutants, and microbes.
Because of the importance of precipitation to agriculture, and to mankind in general, different names are given to its various forms:

Chemical and physical properties

Water

Water is a necessary solvent for all known life, and
an abundant compound on the earth's surface.
Information and properties
Common name water
IUPAC name oxidane
Alternative names aqua, dihydrogen monoxide,
hydrogen hydroxide, (more)
Molecular formula H2O
CAS number 7732-18-5
InChI InChI=1/H2O/h1H2
Molar mass 18.0153 g/mol
Density and phase 0.998 g/cm³ (liquid at 20 °C, 1 atm)
0.917 g/cm³ (solid at 0 °C, 1 atm)
Melting point 0 °C (273.15 K) (32 °F)
Boiling point 99.974 °C (373.124 K) (211.95 °F)
Specific heat capacity 4.184 J/(g·K) (liquid at 20 °C)
Supplementary data page
Disclaimer and references
Main article: Water (molecule)


model of hydrogen bonds between molecules of water


Impact from a water drop causes an upward "rebound" jet surrounded by circular capillary waves.


Dew drops adhering to a spider web


capillary action of water compared to mercury
Water is the chemical substance with chemical formula H2O: one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom.


The major chemical and physical properties of water are:
· Water is a tasteless, odorless liquid at ambient temperature and pressure. The color of water and ice are, intrinsically, a very light blue hue, although water appears colorless in small quantities. Ice also appears colorless, and water vapor is essentially invisible as a gas.[3]
· Water is transparent, and thus aquatic plants can live within the water because sunlight can reach them. Only strong UV light is slightly absorbed.
· Water is a liquid under standard conditions.
· Since oxygen has a higher electronegativity than hydrogen, water is a polar molecule. The oxygen has a slight negative charge while the hydrogens have a slight positive charge giving the article a strong effective dipole moment. The interactions between the different dipoles of each molecule cause a net attraction force associated with water's high amount of surface tension.
· Another very important force that causes the water molecules to stick to one another is the hydrogen bond.
· The boiling point of water (and all other liquids) is directly related to the barometric pressure. For example, on the top of Mt. Everest water boils at about 68 °C (154 °F), compared to 100 °C (212 °F) at sea level. Conversely, water deep in the ocean near geothermal vents can reach temperatures of hundreds of degrees and remain liquid.
· Water sticks to itself. Water has a high surface tension caused by the strong cohesion between water molecules because it is polar. The apparent elasticity caused by surface tension drives the capillary waves.
· Water also has high adhesion properties because of its polar nature.
· Capillary action refers to the tendency of water to move up a narrow tube against the force of gravity.
· Water is a very strong solvent, referred to as the universal solvent, dissolving many types of substances. Substances that will mix well and dissolve in water, e.g. salts, sugars, acids, alkalis, and some gases: especially oxygen, carbon dioxide (carbonation), are known as "hydrophilic" (water-loving) substances, while those that do not mix well with water (e.g. fats and oils), are known as "hydrophobic" (water-fearing) substances.
· All the major components in cells (proteins, DNA and polysaccharides) are also dissolved in water.
· Pure water has a low electrical conductivity, but this increases significantly upon solvation of a small amount of ionic material such as sodium chloride.
· Water has the second highest specific heat capacity of any known chemical compound, after ammonia, as well as a high heat of vaporization (40.65 kJ mol−1), both of which are a result of the extensive hydrogen bonding between its molecules. These two unusual properties allow water to moderate Earth's climate by buffering large fluctuations in temperature.
· The maximum density of water is at 3.98 °C (39.16 °F). Water becomes even less dense upon freezing, expanding 9%. This causes an unusual phenomenon: ice floats upon water, and so water organisms can live inside a partly frozen pond because the water on the bottom has a temperature of around 4 °C (39 °F).
· Water is miscible with many liquids, for example ethanol, in all proportions, forming a single homogeneous liquid. On the other hand, water and most oils are immiscible usually forming layers according to increasing density from the top. As a gas, water vapor is completely miscible with air.
· Water forms an azeotrope with many other solvents.


ADR label for transporting goods dangerously reactive with water
· Some substances (sodium, lithium, calcium, potassium) emit a flammable gas (hydrogen) when wet, or react violently with water.
Distribution of water in nature
Water in the Universe
Much of the universe's water may be produced as a byproduct of star formation. When stars are born, their birth is accompanied by a strong outward wind of gas and dust. When this outflow of material eventually impacts the surrounding gas, the shock waves that are created compress and heat the gas. The water observed is quickly produced in this warm dense gas.[4]
Water has been detected in interstellar clouds within our galaxy, the Milky Way. It is believed that water exists in abundance in other galaxies too, because its components, hydrogen and oxygen, are among the most abundant elements in the universe. Interstellar clouds eventually condense into solar nebulae and solar systems, such as ours.
Water vapor is on:
· Mercury - 3.4% in the atmosphere
· Venus - 0.002% in the atmosphere
· Earth - trace in the atmosphere (varies with climate)
· Mars - 0.03% in the atmosphere
· Jupiter - 0.0004% in the atmosphere
· Saturn - in ices only
· Enceladus (moon of Saturn) - 91% in the atmosphere
· exoplanets known as HD 189733 b[5] and HD 209458 b.[6]
Liquid water is on:
· Earth - 71% of surface
Strong evidence suggests that liquid water is present just under the surface of Saturn's moon Enceladus. Probably some liquid water is on Europa.
Water ice is on:
· Earth - mainly on ice sheets
· polar ice caps on Mars
· Titan
· Europa
· Enceladus
Probability or possibility of distribution of water ice is at: lunar ice on the Moon, Ceres (dwarf planet), Tethys (moon). Ice is probably in internal structure of Uranus, Neptune, and Pluto and on comets.
Water and habitable zone


The Solar System along center row range of possible habitable zones of varying size stars.
The existence of liquid water, and to a lesser extent its gaseous and solid forms, on Earth is vital to the existence of life on Earth as we know it. The Earth is located in the habitable zone of the solar system; if it were slightly closer to or further from the Sun (about 5%, or 8 million kilometres or so), the conditions which allow the three forms to be present simultaneously would be far less likely to exist.[7]
Earth's mass allows gravity to hold an atmosphere. Water vapor and carbon dioxide in the atmosphere provide a greenhouse effect which helps maintain a relatively steady surface temperature. If Earth were smaller, a thinner atmosphere would cause temperature extremes preventing the accumulation of water except in polar ice caps (as on Mars).
It has been proposed that life itself may maintain the conditions that have allowed its continued existence. The surface temperature of Earth has been relatively constant through geologic time despite varying levels of incoming solar radiation (insolation), indicating that a dynamic process governs Earth's temperature via a combination of greenhouse gases and surface or atmospheric albedo. This proposal is known as the Gaia hypothesis.
The state of water also depends on a planet's gravity. If a planet is sufficiently massive, the water on it may be solid even at high temperatures, because of the high pressure caused by gravity.
There are various theories about origin of water on Earth.
Water on Earth
Main articles: Hydrology and Water distribution on Earth


Water covers 71% of the Earth's surface; the oceans contain 97.2% of the Earth's water. The Antarctic ice sheet, which contains 90% of all fresh water on Earth, is visible at the bottom. Condensed atmospheric water can be seen as clouds, contributing to the Earth's albedo.
Hydrology is the study of the movement, distribution, and quality of water throughout the Earth. The study of the distribution of water is hydrography. The study of the distribution and movement of groundwater is hydrogeology, of glaciers is glaciology, of inland waters is limnology and distribution of oceans is oceanography. Ecological processes with hydrology are in focus of ecohydrology.
The collective mass of water found on, under, and over the surface of a planet is called hydrosphere. Earth's approximate water volume (the total water supply of the world) is 1 360 000 000 km³ (326 000 000 mi³). Of this volume:
· 1 320 000 000 km³ (316 900 000 mi³ or 97.2%) is in the oceans.
· 25 000 000 km³ (6 000 000 mi³ or 1.8%) is in glaciers, ice caps and ice sheets.
· 13 000 000 km³ (3,000,000 mi³ or 0.9%) is groundwater.
· 250 000 km³ (60,000 mi³ or 0.02%) is fresh water in lakes, inland seas, and rivers.
· 13 000 km³ (3,100 mi³ or 0.001%) is atmospheric water vapor at any given time.
Groundwater and fresh water are useful or potentially useful to humans as water resources.
Liquid water is found in bodies of water, such as an ocean, sea, lake, river, stream, canal, pond, or puddle. The majority of water on Earth is sea water. Water is also present in the atmosphere in solid, liquid, and vapor phases. It also exists as groundwater in aquifers.
The most important geological processes caused by water are: chemical weathering, water erosion, water sediment transport and sedimentation, mudflows, ice erosion and sedimentation by glacier.
Water cycle
Main article: Water cycle


water cycle
The water cycle (known scientifically as the hydrologic cycle) refers to the continuous exchange of water within the hydrosphere, between the atmosphere, soil water, surface water, groundwater, and plants.
Water moves perpetually through each of these regions in the water cycle consisting of following transfer processes:
· evaporation from oceans and other water bodies into the air and transpiration from land plants and animals into air.
· precipitation, from water vapor condensing from the air and falling to earth or ocean.
· runoff from the land usually reaching the sea.
Most water vapor over the oceans returns to the oceans, but winds carry water vapor over land at the same rate as runoff into the sea, about 36 Tt per year. Over land, evaporation and transpiration contribute another 71 Tt per year. Precipitation, at a rate of 107 Tt per year over land, has several forms: most commonly rain, snow, and hail, with some contribution from fog and dew. Condensed water in the air may also refract sunlight to produce rainbows.
Water runoff often collects over watersheds flowing into rivers. A mathematical model used to simulate river or stream flow and calculate water quality parameters is hydrological transport model. Some of water is diverted to irrigation for agriculture. Rivers and seas offer opportunity for travel and commerce. Through erosion, runoff shapes the environment creating river valleys and deltas which provide rich soil and level ground for the establishment of population centers. A flood occurs when an area of land, usually low-lying, is covered with water. It is when a river overflows its banks or flood from the sea. A drought is an extended period of months or years when a region notes a deficiency in its water supply. This occurs when a region receives consistently below average precipitation.
Fresh water storage
Main article: Water resources
Some runoff water is trapped for periods, for example in lakes. At high altitude, during winter, and in the far north and south, snow collects in ice caps, snow pack and glaciers. Water also infiltrates the ground and goes into aquifers. This groundwater later flows back to the surface in springs, or more spectacularly in hot springs and geysers. Groundwater is also extracted artificially in wells. This water storage is important, since clean, fresh water is essential to human and other land-based life. In many parts of the world, it is in short supply.
Tides

High tide (left) and low tide (right).
Main article: Tide
Tides are the cyclic rising and falling of Earth's ocean surface caused by the tidal forces of the Moon and the Sun acting on the oceans. Tides cause changes in the depth of the marine and estuarine water bodies and produce oscillating currents known as tidal streams. The changing tide produced at a given location is the result of the changing positions of the Moon and Sun relative to the Earth coupled with the effects of Earth rotation and the local bathymetry. The strip of seashore that is submerged at high tide and exposed at low tide, the intertidal zone, is an important ecological product of ocean tides.
Effects on life


An oasis is an isolated water source with vegetation in desert


Some of the biodiversity of a coral reef


Water reflecting light in Crissy Field
From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the body's solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Therefore, without water, these metabolic processes would cease to exist, leaving us to muse about what processes would be in its place, such as gas absorption, dust collection, etc.
Water is also central to photosynthesis and respiration. Photosynthetic cells use the sun's energy to split off water's hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the sun's energy and reform water and CO2 in the process (cellular respiration).
Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH−) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4.
For example a cell of Escherichia coli contains 70% of water, a human body 60-70%, plant body up to 90% and the body of an adult jellyfish is made up of 94–98% water.
Aquatic life forms
Main articles: Hydrobiology and Aquatic plant


Some marine diatoms - a key phytoplankton group
Earth's waters are filled with life. The earliest life forms appeared in water; nearly all fish live exclusively in water, and there are many types of marine mammals, such as dolphins and whales that also live in the water. Some kinds of animals, such as amphibians, spend portions of their lives in water and portions on land. Plants such as kelp and algae grow in the water and are the basis for some underwater ecosystems. Plankton is generally the foundation of the ocean food chain.
Different water creatures have found different solutions to obtaining oxygen in the water. Fish have gills instead of lungs, though some species of fish, such as the lungfish, have both. Marine mammals, such as dolphins, whales, otters, and seals need to surface periodically to breathe air.
Effects on human civilization


Water Fountain
Civilization has historically flourished around rivers and major waterways; Mesopotamia, the so-called cradle of civilization, was situated between the major rivers Tigris and Euphrates; the ancient society of the Egyptians depended entirely upon the Nile. Large metropolises like Rotterdam, London, Montreal, Paris, New York City, Shanghai, Tokyo, Chicago, and Hong Kong owe their success in part to their easy accessibility via water and the resultant expansion of trade. Islands with safe water ports, like Singapore, have flourished for the same reason. In places such as North Africa and the Middle East, where water is more scarce, access to clean drinking water was and is a major factor in human development.
Health and pollution


Environmental Scientist sampling water.
Water fit for human consumption is called drinking water or potable water. Water that is not potable can be made potable by distillation (heating it until it becomes water vapor, and then capturing the vapor without any of the impurities it leaves behind), or by other methods (chemical or heat treatment that kills bacteria). Sometimes the term safe water is applied to potable water of a lower quality threshold (i.e., it is used effectively for nutrition in humans that have weak access to water cleaning processes, and does more good than harm). Water that is not fit for drinking but is not harmful for humans when used for swimming or bathing is called by various names other than potable or drinking water, and is sometimes called safe water, or "safe for bathing". Chlorine is a skin and mucous membrane irritant that is used to make water safe for bathing or drinking. Its use is highly technical and is usually monitored by government regulations (typically 1 part per million (ppm) for drinking water, and 1-2 ppm of chlorine not yet reacted with impurities for bathing water).
This natural resource is becoming scarcer in certain places, and its availability is a major social and economic concern. Currently, about 1 billion people around the world routinely drink unhealthy water. Most countries accepted the goal of halving by 2015 the number of people worldwide who do not have access to safe water and sanitation during the 2003 G8 Evian summit.[8] Even if this difficult goal is met, it will still leave more than an estimated half a billion people without access to safe drinking water and over 1 billion without access to adequate sanitation. Poor water quality and bad sanitation are deadly; some 5 million deaths a year are caused by polluted drinking water. Water, however, is not a finite resource (like petroleum is), but rather re-circulated as potable water in precipitation in quantities many degrees of magnitude higher than human consumption. Therefore, it is the relatively small quantity of water in reserve in the earth (about 1% of our drinking water supply, which is replenished in aquifers around every 1 to 10 years), that is a non-renewable resource, and it is, rather, the distribution of potable and irrigation water which is scarce, rather than the actual amount of it that exists on the earth. Water-poor countries use importation of goods as the primary method of importing water (to leave enough for local human consumption), since the manufacturing process uses around 10 to 100 times products' masses in water.
In the developing world, 90% of all wastewater still goes untreated into local rivers and streams.[9] Some 50 countries, with roughly a third of the world’s population, also suffer from medium or high water stress, and 17 of these extract more water annually than is recharged through their natural water cycles.[10] The strain not only affects surface freshwater bodies like rivers and lakes, but it also degrades groundwater resources.
Human uses
Agriculture


irrigation of field crops
The most important use of water in agriculture is for an irrigation and irrigation is key component to produce enough food. Irrigation takes up to 90% of water withdrawn in some developing countries.[11]
As a scientific standard
On 7 April 1795, the gram was defined in France to be equal to "the absolute weight of a volume of pure water equal to a cube of one hundredth of a meter, and to the temperature of the melting ice."[12] For practical purposes though, a metallic reference standard was required, one thousand times more massive, the kilogram. Work was therefore commissioned to determine precisely how massive one liter of water was. In spite of the fact that the decreed definition of the gram specified water at 0 °C—a highly stable temperature point—the scientists chose to redefine the standard and to perform their measurements at the most stable density point: the temperature at which water reaches maximum density, which was measured at the time as 4 °C.[13]
The Kelvin temperature scale of the SI system is based on the triple point of water. The scale is a more accurate development of the Celsius temperature scale, which is defined by the boiling point (100 °C) and melting point (0 °C) of water.
Natural water consists mainly of the isotopes hydrogen-1 and oxygen-16, but there is also small quantity of heavier hydrogen-2 (deuterium). The amount of deuterium oxides or heavy water is very small, but it still affects the properties of water. Water from rivers and lakes tends to contain less deuterium than seawater. Therefore, a standard water called Vienna Standard Mean Ocean Water is defined as the standard water.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
Water
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» فن الرسم على الماء Water mabrbling فيديو مدهش

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مملكة العلوم :: المنتديات العامة :: أخبار العلم و العلوم-
انتقل الى: